为了解决问题并提高性能,当今世界的技术所采用的频率不断提高。毫米波(mmWave)频率为应对通信和防务等众多行业中的严苛要求带来了希望。5G通信系统受益于防务公司多年的研究成果,虽然它们针对的应用不同,但需求类似。在电信链路中需要更高的数据速率,不断超出现有技术能力,其解决方案正在向28 GHz和39 GHz发展。
无线电子设备交织的世界
更高频率助力实现更高数据速率和更宽通信带宽
5G对电子战有何影响
当今的军事冲突越来越多地以电子方式进行对抗,这引发了电子战的构想。电子战的关键组件之一是雷达,只需发送一个信号并等待信号返回,即可对雷达视野范围进行测绘。雷达系统已经经历了100多年的发展,其主要优势是可以检测和测绘人类看不见的目标物。这使雷达操作员比没有雷达的对手拥有更大的优势。因此,雷达技术多年来一直在持续发展。如今,我们看到雷达用在日常天气预报、空中交通管制以及新兴应用中,例如在汽车行业中利用雷达来检测汽车与目标物之间的距离。采用UHF和VHF频率的传统低频雷达系统已经被应用于超长距离早期探测雷达。快速移动的飞机更常在X频段频率(8 GHz至12 GHz)运行,从而可以受益于更高分辨率和更小尺寸的天线。用于战斗机中部署和瞄准导弹的雷达系统通常在Ka频段(33 GHz至37 GHz)运行。94 GHz下的制导弹药和导弹开发正在不断增加。雷达系统转向更高频率具有诸多优势,我们可以通过查看表征目标解析能力的距离分辨率和角度分辨率来了解这些优势。转向更高频率的第一个优势是实现给定角度分辨率的天线尺寸会缩小,该分辨率是小型军备安装的关键。从另一个角度来看,对于给定天线尺寸,更高频率下的角度分辨率会增加。雷达的距离分辨率与调制带宽成正比,如上所述,在更高的频率下会提高距离分辨率。因此,由于应用要求更高的分辨率,转向更高频率会带来优势。
图1. 以载波频率为中心的调制带宽。
5G对IC的影响
当今世界非常依赖于移动通信。支持5G蜂窝基础设施的先进技术对于许多电信设备提供商及其基于IC的供应链(如图2所示)而言,是一个重要的增长领域。这一巨大的增长机会催生了数百万甚至数十亿美元的投资,以实现下一代产品。构成这些系统的核心元件是通过网络路由数据的IC。我们可以看到,IC供应链的各个方面都在改变和发展(如图2所示)。我们看到,从这些产品可用的晶圆制造工艺到最终测试解决方案,支持这些产品的技术都发生了重大的创新。
Figure 2. 5G IC supply chain.
提供晶圆制造服务的众多半导体代工厂为IC创造了基础材料,并不断创新。许多代工厂已经开发出新的工艺技术来参与竞争并实现5G新技术。这种改进的示例之一是转向比电子束光刻更具成本效益的光学光刻。另一个优势是可以将新功能集成到单个工艺节点中,以在价格敏感的市场中参与竞争。
随着新工艺技术的推出,IC设计也在不断演进。通过在单个工艺节点中提供新功能,IC设计人员能够将某些功能组合到一个产品中,或者从核心晶体管中提取比以前更高的性能。这些趋势最终导致芯片的集成度提高,并且更易于部署。随着向毫米波频率的扩展,具有吸引力的还包括能够利用低成本封装的优势,使装配更加容易。毫米波频率下的传统防务装配方式是芯片-引线互连装配法,即转换成小型金属外壳,芯片之间采用引线相互键合。这并不是一种大批量装配方法,并且通常比表面贴装技术更贵。过去几年一直采用此方法的主要原因是尺寸限制。但是,随着在更小封装中实现更高集成度和更高的性能,表面贴装更具吸引力。
对于在28 GHz和39 GHz下的相控阵天线及其IC,OTA测试等测试解决方案已经成为现实。以前,要测试相控阵天线,通常需要一个大的电波暗室,它不仅难以构造且价格昂贵。现在,这些测试解决方案变得更为经济、更小型化并且现成可用,从而导致可以提供完整天线解决方案,而无需花费大量投资来测量最终产品的供应商数量大大增加。相控阵天线已经从主要用于防务公司和大学的探索性技术转变为主流技术。它不仅让旨在抓住5G机遇的电信公司能够利用这一新技术,而且还能更好地防御新兴防务威胁。现在,标准仪器供应商提供的精确测量技术可以更快地解决经验不足的天线工程师之前面临的挑战。
这样一来,业界便可提供更多的毫米波产品,这些产品既可以部署在通信应用中,也可以用于防务应用。通常,用于蜂窝基础设施的产品在规格和功能上与防务和仪器仪表行业产品的需求很接近。易于获取的IC和测试解决方案的发展加快了最终产品的上市时间,这极大地降低了防务行业中毫米波频率出现威胁的等级。