作者 Wolfe Yu
电磁辐射干扰问题
电磁辐射原理
使用闭合导体,在其两端加载时变电流,就会产生波动的磁场和围绕它的电场。当电荷加速移动时,如果同时出现近场和远场,近场跟着电荷做加速运动,而远场无法与电荷移动同步,就会出现扭结(Kink)。电场扭结太大,就会脱离原来的场,辐射出去。
图1 电场扭结及辐射原理
图2 远场的形成原理
传输波形的谐波分量
在数字电路中,大部分基带信号都类似于方波,这些波形是无数依次递减的谐波分量叠加而成。电流的谐波分量会产生波动的磁场,这些磁场会通过耦合或者辐射的方式往下传输。
图3 数字信号的谐波分量
PCB传输线路模型
在PBC Layout中,大部分工程师喜欢把电源线或者信号线和地分开布,这样很危险,因为一旦环路和高频信号的波长接近,就会形成一个环形天线,高频的谐波频率会通过电磁场耦合进来,形成共振。
图4 PCB布线中产生的环形天线
根据下面两种布线,两个导体会形成一个电容。按照电磁场辐射原理,左边布线,电子在高频运动的时候,很容易形成近场和远场,产生扭结,发射电磁波。同时也很容易接收外来电磁波。而右边布线,电源和地之间,回路足够小,形成闭合回路,电场辐射就非常微弱,很难产生电场辐射,也很难被其他电磁场干扰。
图5 电源和地的布局布线对比a
大部分信号,特别是高速信号,都会设计成差分电路。在差分电路中,主要分为直流分量和交流分量,直流分量不会产生交变磁场,交流分量会产生交变磁场,产生电磁干扰。
图6 差分电路模型
有关差分电路的布局布线问题,其实就是严格按照等长对称线来实现一个封闭电路,电磁场很难穿透差分电路。这就是为何差分信号的传输特性相对比较稳定。除了需要对差分信号做等分布线之外,工程师还需要对差分信号做电源匹配和包地。
图7 差分电路等长对称原理
实际上,在电路结构中,各个回路的电源和地才是整个电路中最大的差分对,大多时候,工程师们喜欢把电源布线,布成如图8所示的结构,在早期的单面板产品布局布线中,这算是最好的布线方法。
图8 传统单面板布局布线图
随着通信速率要求的提高,图8中这个布线结构就会形成天线效应,产生电磁波辐射。所以为了降低电磁干扰,Wolfe Yu建议在布线时将电源和地尽量布在一起。
图9 主芯片电源地布线建议
基于同轴线的全封闭电路
在传输线路中,工程师们很难保证电路能够达到100%的闭合效果。为了防止在传输线上产生电磁辐射,于是提出一种基于同轴线的传输方式。同轴线传输就是把电磁场封闭在内外导体之间,辐射损耗和受外界损耗都非常小。
图13 同轴线闭合电磁场
同轴线传输解决了高速信号传输的电磁辐射的问题。除了电磁辐射问题,电路传输中还会面临另外一个问题。那就是,当信号频率很高的时候,除了阻性负载,还有容性负载和感性负载产生的反射信号,反射信号会叠加在原信号上,改变原信号的形状,这被称为“传输线损耗”。
图14 传输线等效模型
图14是一个传输线等效模型,除了阻性负载,还存在容性负载和感性负载。根据理论公式,很容易计算出传输线的阻抗值。为了抵消反射信号,工程师可以在电路源端和负载之间插入无源网络,使负载阻抗和源阻抗共轭匹配,这就是阻抗匹配。
图15 阻抗匹配原理
Microchip基于CoaXpress®一揽子解决方案
Excelpoint世健代理的Microchip推出一种基于CoaXpress®的视频传输方案就是基于同轴线的全封闭电路传输方案。
EQCO125T40集成均衡器、CDR和电缆驱动,可以实现在一根电缆或PCB跟踪对上发送/接收信号,在1.25 Gbps/12.5 Gbps 8b/10b编码下行传输,以及20.833 Mbps/41.666 Mbps 8b/10b编码的上行传输,传输距离最远可以达到40m。
同轴电缆固有地被其外部导体屏蔽,从而使其对许多操作环境中存在的外部电磁干扰(EMI)高度耐受,特别是在嘈杂的工厂环境中。这使CoaXpress可以应用于各种复杂的工业环境,是高清摄像头镜头传输的不二方案。
图16 基于CoaXpress®的视频传输方案
这颗芯片搭载在基于Microchip PolarFire®视频平台上,客户可以利用Microchip提供的免费IP包轻松完成产品开发,缩短开发流程。